
Universal Verification Methodology
(UVM)

Verifying Blocks to IP to SOCs and Systems

Organizers:
Dennis Brophy
Stan Krolikoski

Yatin Trivedi

San Diego, CA
June 5, 2011

2 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Workshop Outline

10:00am – 10:05am Dennis Brophy Welcome

10:05am – 10:45am Sharon Rosenberg UVM Concepts and Architecture

10:45am – 11:25am Tom Fitzpatrick UVM Sequences and Phasing

11:25am – 11:40am Break

11:40am – 12:20pm Janick Bergeron UVM TLM2 and Register Package

12:20pm – 12:50pm Ambar Sarkar Putting Together UVM Testbenches

12:50pm – 1:00pm All Q & A

3 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Workshop Outline

10:00am – 10:05am Dennis Brophy Welcome

10:05am – 10:45am Sharon Rosenberg UVM Concepts and Architecture

10:45am – 11:25am Tom Fitzpatrick UVM Sequences and Phasing

11:25am – 11:40am Break

11:40am – 12:20pm Janick Bergeron UVM TLM2 and Register Package

12:20pm – 12:50pm Ambar Sarkar Putting Together UVM Testbenches

12:50pm – 1:00pm All Q & A

UVM Concepts and Architecture
Sharon Rosenberg

Cadence Design Systems

5 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

UVM Core Capabilities
• Universal Verification Methodology

– A methodology and a class library for building advanced
reusable verification components

– Methodology first!

• Relies on strong, proven industry foundations
– The core of the success is adherence to a standard

(architecture, stimulus creation, automation, factory usage, etc’)

• We added useful enablers and tuned a few to make
UVM1.0 more capable

• This section covers the high-level concepts of UVM
– Critical to successful deployment of UVM
– Mature and proven

6 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

The Goal: Automation
• Coverage Driven Verification (CDV) environments

 Automated Stimulus Generation
 Independent Checking
 Coverage Collection

Packaged for Reuse

23098432
38748932
23432239
17821961
10932893
20395483
18902904
23843298
23432432
24324322
55252255
09273822
13814791
4098e092
23432424
24242355
25262622
26452454
24524522

seed Monitor

Scoreboard
Checking
Coverage

Monitor

Driver DUT
APB UARTTestsTests

Stimulus
Generator

Coverage

Coverage

Random
Sequence
Generator

7 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

UVM Architecture:
Interface Level Encapsulation

• Agents provide all the verification logic
for a device in the system

• Instantiation and connection logic is
done by the developer in a standard
manner

• A Standard agent has:
– Sequencer for generating traffic
– Driver to drive the DUT
– Monitor

• The monitor is independent of the
driving logic

• Agent has standard configuration
parameters for the integrator to use

uvm_agent

uvm_
sequencerConfig:

uvm_monitor

events,
status,
data uvm_driver

DUT

interface

sequences

vivi

8 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Agent Standard Configuration
uvm_agent

Config:
is_active:
UVM_ACTIVE
min_addr:
16’h0100
uvm_monitor

events,
status,
data

DUT

• A standard agent is configured using an
enumeration field: is_active

• UVM_ACTIVE:
• Actively drive an interface or device
• Driver, Sequencer and Monitor are

allocated

• UVM_PASSIVE:
• Only the Monitor is allocated
• Still able to do checking and collect

coverage

• Other user-defined configuration parameters
can also be added

• Example: address configuration for
slave devices

uvm_
sequencer

uvm_driver

sequences

vivi

passive

9 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

uvm: Configurable Bus Environment

Environment
slave agent

sequencer
Config:

monitor

events,
status,
data

driver

seq

vivi

i/f

i/f

vi

master agent
sequencer

Config:

monitor

events,
status,
data

driver

seq

vivi

i/f

i/f

vi

Config:
slave agent

sequencer
Config:

monitor

events,
status,
data

driver

seq

arbiter agent
sequencer

Config:

monitor

events,
status,
data

driver

seq

monitor
events,
status,
data

Some agent config
parameters come from the
environment config

Allows changing the number of
agents without further
configuration per agent

master agent
sequencer

Config:

monitor

events,
status,
data

driver

seq

vivi

i/f

i/f

vi

master agent
sequencer

Config:

monitor

events,
status,
data

driver

seq

Virtual
interface

Sometimes common
for all agents

DUT
interfaceEnv’s allow reuse at the interface level!

num_masters=3
num_slaves=2

Bus level monitoring
can be used by all
agents

10 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

UVM Configuration Mechanism
• The configuration mechanism allows a powerful way for

attribute configuration
• Configuration mechanism advantages:

– Mechanism semantic allows an upper component to
override contained components values

• No file changes are required

– Can configure attributes at various hierarchy locations
– Wild cards and regular expressions allow configuration of

multiple attributes with a single command
– Debug capabilities
– Support for user defined types (e.g. SV virtual interfaces)
– Run-time configuration support
– Type safe solution

11 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

UVM1.0 Configuration
Enhancements (Cont’)
class uvm_config_db#(type T=int) extends uvm_resource_db#(T);

static function bit set (uvm_component cntxt,
string inst_name,string field_name, T value);

static function bit get (uvm_component cntxt,
string inst_name,string field_name, ref T value);

static function bit exists(…);
static function void dump();
static task wait_modified(…);

endclass

// run-time configuration example:
task mycomp::run_phase (uvm_phase phase);

uvm_config_db#(int)::set(this, “*”, “field”, 10);
#10; uvm_config_db#(int)::set(this, “a.b.c”, “field”, 20);

endtask
Note – all uvm_config_db
functions are static so they
must be called using the ::
operator

Check if configuration
exists

Dump the data base

Wait for value to be set in
the uvm_config_db

12 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

// setting the virtual interface from the top module
module ubus_top;

…
ubus_if ubus_if0(); // instance of the interface

initial begin
uvm_config_db#(virtual ubus_if)::

set(null,"*.ubus_demo_tb0.ubus0","vif", ubus_if0);
run_test();
…

end
endmodule

Virtual Interface Configuration
Example
function void ubus_bus_monitor:: connect_phase(uvm_phase phase);

if (!uvm_config_db#(virtual ubus_if)::
get(this, “”,"vif", vif))

else
`uvm_error("NOVIF",{"virtual interface must be set for: ",

get_full_name(),".vif"})
endfunction: connect_phase

Setting in the top removes hierarchy
dependencies in the testbench,
allows consistency and other
configuration capabilities

Built-in checking

13 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Where SV Language Stops and UVM Begins
Example: Data Items

Does language alone support all the necessary customization operations?

• Randomization
• Printing
• Cloning
• Comparing
• Copying
• Packing
• Transaction Recording

class data_packet_c ;
string pkt_name;
pkt_header _c header;
byte payload [];
byte parity;
parity_e parity_type;
int ipg_delay;

endclass

class data_packet_c ;
string pkt_name;
rand pkt_header _c header;
rand byte payload [];
byte parity;
rand parity_e parity_type;
rand int ipg_delay;

endclass

UVM provides the rest!

No! Only randomization is defined
in the SystemVerilog LRM

14 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Enabling Data Item Automation
class data_packet_c ;

string rev_no = “v1.1p”;
rand pkt_hdr _c header; //class:{dest_addr, pkt_length}
rand byte payload [];
byte parity;
rand parity_e parity_type;
rand int ipg_delay;

// Constraints, constructor, methods
. . .
endclass: data_packet_c

extends uvm_sequence_item;
derived from uvm_sequence_item

// field declarations and automation flags
`uvm_object_utils_begin(data_packet_c)

`uvm_field_string(rev_no, UVM_DEFAULT+ UVM_NOPACK)
`uvm_field_object(header, UVM_DEFAULT)
`uvm_field_array_int(payload, UVM_DEFAULT)
`uvm_field_int(parity, UVM_DEFAULT)
`uvm_field_enum(parity_e, parity_type, UVM_DEFAULT)
`uvm_field_int(ipg_delay, UVM_DEFAULT + UVM_NOCOMPARE)

`uvm_object_utils_end
// Additional: constraints, constructor, methods

endclass : data_packet_c Specify field level flags:
UVM_NOCOMPARE, UVM_NOPRINT, etc.

Enables all automation for
data_packet_c fields

http://www.ovmworld.org/index.php�

15 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

// two instances of data_packet_c
data_packet_c packet1, packet2;
initial begin

// create and randomize new packet
packet1 = new(“my_packet”);
assert(packet1.randomize());

// print using UVM automation
packet1.print();
// copy using UVM automation
packet2 = new(“copy_packet”);
packet2.copy(packet1));
packet2.rev_no = “v1.1s”;
// print using UVM tree printer
packet2.print(

uvm_default_tree_printer);
end

Data Type Automation---------------------------------------
Name Type Value

my_packet data_packet_c @479
rev_no string v1.1p
header pkt_header_c @520
dest_addr integral 'h25
pkt_length integral 'd29

payload da(integral) -
[0] integral 'h2a
[1] integral 'hdb
...
[28] integral 'h21

parity integral 'hd9
parity_type parity_e GOOD_PARITY
ipg_delay integral 'd20

copy(): Copies all fields of packet1
to packet2, including sub-classes
and arrays

UVM also allows manual
implementation for performance or
other reasons

copy_packet: (data_packet_c@489) {
rev_no: v1.1s
header: (pkt_header_c@576) {
dest_addr: 'h25
pkt_length: 'd29

}
payload: {
[0]: 'h2a
[1]: 'hdb
... ...
[28]: 'h21

}
parity: 'hd9
parity_type: GOOD_PARITY
ipg_delay: 'd20

}

http://www.ovmworld.org/index.php�

16 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

UVM Messaging Facility

• Simple Messaging:
– `uvm_*(string id, string message, <verbosity>);

• Where * (severity) is one of fatal, error, warning, info
• <verbosity> is only valid for uvm_info

UVM_INFO myfile.sv(15) @10 uvm_test_top.test.generator [PKT]:
Packet Sent

•Output
`uvm_info("PKT", "Packet Sent“, UVM_LOW);

• Messages print trace information with advantages over
$display:

• Aware of its hierarchy/scope in testbench
• Allows filtering based on hierarchy, verbosity, and time

severity

file/line time

message body scope

id

17 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

UVM Sequences
• A sequencer controls the generation of random stimulus

by executing sequences

• A sequence captures meaningful streams
of transactions
– A simple sequence is a random transaction generator
– A more complex sequence can contain timing, additional

constraints, parameters

• Sequences:
– Allow reactive generation – react to DUT
– Have many built-in capabilities like interrupt support, arbitration

schemes, automatic factory support, etc
– Can be nested inside other sequences
– Are reusable at higher levels

18 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

UVM Tests and Testbenches
• Placing all components in the test

requires lot of duplication
• Separate the env configuration and

the test
– TB class instantiates and configures

reusable components
• Tests instantiate a testbench

– Specify the nature of generated traffic
– Can modify configuration parameters

as needed
• Benefits

– Tests are shorter, and descriptive
– Less knowledge to create a test
– Easier to maintain – changes are

done in a central location

module top ();
class test extends …

class tb extends uvm_env…

Virtual S
equencer

VC3

Mon BFMMon BFM

VC 2

Mon DRV

SEQR

VC3

Mon BFMMon BFM
BUS VC

Mon DRV

SEQR

VC3

Mon BFMMon BFM

VC1

Mon DRV

SEQR

DUT

MemCPU

PeriphPeriph

Module VC
Scoreboard

coverage

19 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

UVM Simulation Phases
• When using classes, you need to manage environment

creation at run-time
• Test execution is divided to phases

– Configuration, testbench creation, run-time, check, etc

• Unique tasks are performed in each simulation phase
– Set-up activities are performed during “testbench creation”

while expected results may be addressed in “check”
– Phases run in order – next phase does not begin until previous

phase is complete

• UVM provides set of standard phases enabling VIP
plug&play
– Allows orchestrating the activity of components that were

created by different resources

20 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

UVM Simulation Phases

Post-elaboration activity (e.g. print topology)

UVM component’s built-in phases - run in order

Build Top-Level Testbench Topology

tasks - Run-time execution of the test

Gathers details on the final DUT state

Processes and checks the simulation results.

Simulation results analysis and reporting

Configure verification components

Connect environment topology

build
connect

start_of_simulation

run

extract
check
report

end of elaboration

Note: All phases except run() execute in zero time

reset
configure
main
shutdown

All phase names have postfix “_phase”

21 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

UVM Testbench Example
class bridge_tb extends uvm_env;

`uvm_component_utils(bridge_tb)

apb_env apb; // APB OVC
ahb_env ahb; // AHB OVC
bridge_mod_env bridge_mod ; // Module OVC

virtual function void build_phase(uvm_phase phase);
super.build_phase(phase);
uvm_config_db#(uvm_active_passive_enum)::set(this,

“apb.slave*”,”is_active”, UVM_ACTIVE);

uvm_config_db#(int)::set(this, “ahb”,”master_num”, 3);

uvm_config_db#(uvm_active_passive_enum)::set(this,

“ahb.slave[0]”, “is_active”, UVM_PASSIVE);

apb = apb_env::type_id::create(“apb”, this);
ahb = ahb_env::type_id::create(“ahb”, this);
bridge_mod = bridge_mod_env::type_id::create(“bridge_mod”, this);

endfunction
endclass: bridge_tb

Extends from uvm_env

Instances of reusable verification
components and module verif
component

Create and build
using a standard
mechanism

Configure using wildcards

The test creates an instance of the
tesbench, overrides constraints,
and sets the default sequences

22 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Overriding SV Components
and Data Objects

• UVM Provides a mechanism for overriding the
default data items and objects in a testbench

• “Polymorphism made easy” for test writers

Replace data_packet_c in agent[0] sequencer
&

Replace agent[1]’s driver with new driver (v1)

A

B

data_packet_c

short_packet_c

my_env
agent[0]

sequencer

driver monitor

A

A A

agent[1]

sequencer

driver monitor

A

A A

my_env
agent[0]

sequencer

driver monitor

A

A A

agent[1]

sequencer

driver monitor

A

A A

B

driver
A

driver

driver_v1

For a specific test, we want to
replace all data_packet_c packets
with short_packet_c packets

B

B B

B

B B
Replace specific instances:

object::type_id::set_inst_override

(derived_obj::get_type(), “hierarchical_path”);

Example:
data_packet_c::type_id::set_inst_override

(short_packet_c::get_type(),

“my_env.agent[0].sequencer”);

my_driver::type_id::set_inst_override
(driver_v1::get_type(), “my_env.agent[1]”);

Replace ALL instances:
object::type_id::set_type_override(

derived_obj::get_type())

Example:
data_packet_c::type_id::set_type_override

(short_packet_c::get_type());

http://www.ovmworld.org/index.php�

23 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

The Test Launching
Mechanism

module top()
import ... // uvm lib, tests, and packages

endmodule : top

DUT

IF IF rst clksIF

initial begin
run_test();

end

test3
tb

envenvenv Creates test and starts
simulation phases for
all components

Multiple tests DUT snapshot

test2
tb

envenv

Allows execution of multiple tests on the same snapshot

test1
tb

envenvenv

Function void
build();

…
endfunction

Compile the entire test suite together and use command-
line option to select a test:
% <sim> –f run.f +UVM_TESTNAME=test3

24 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Extensions Using Callbacks

• Like the factory, callbacks are a way to affect an existing
component from outside

• The SystemVerilog language includes built-in callbacks
– e.g. post_randomize(), pre_body()

• Callbacks requires the developer to predict the extension
location and create a proper hook

• Callbacks advantages:
– They do not require inheritance
– Multiple callbacks can be combined

25 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

UVM Report Catcher Callback
Goal: Message Manipulation

class my_catcher extends
uvm_report_catcher;

virtual function action_e catch();
if(get_severity()==UVM_ERROR && get_id()=="MYID")
begin
set_severity(UVM_INFO);
set_action(get_action() - UVM_COUNT);

end
return THROW; // can throw the message for more

manipulation or catch it to avoid further processing
endfunction

endclass

// In testbench run phase
my_catcher catcher = new;
uvm_report_cb::add(null,catcher);
`uvm_error("MYID", "This one should be demoted")
#100;
catcher.callback_mode(0); //disable the catcher
`uvm_error("MYID", "This one should not be demoted")

• can disable a callback using the
built-in callback_mode() method

This example demotes MYID to be
an Info

26 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Command-line Processor
Class
• Provide a vendor independent general interface

to the command line arguments
• Supported categories:

– Basic Arguments and values
• get_args, get_args_matches

– Tool information
• get_tool_name(), get_tool_version()

– Built-in UVM aware Command Line arguments
• Supports setting various UVM variables from the command

line such as verbosity and configuration settings for integral
types and strings

• +uvm_set_config_int, +uvm_set_config_string

27 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Command-line Processor Example
class test extends uvm_test;

…
function void start_of_simulation();

uvm_cmdline_processor clp;
string arg_values[$];
string tool, version;
clp = uvm_cmdline_processor::get_inst();
tool = clp.get_tool_name();
version = clp.get_tool_version();
`uvm_info("MYINFO1", ("Tool: %s, Version : %s", tool, version,

UVM_LOW)
void'(clp.get_arg_values("+foo=", arg_values));
`uvm_info("MYINFO1","arg_values size : %0d", arg_values.size(),

UVM_LOW));
for(int i = 0; i < arg_values.size(); i++) begin

`uvm_info("MYINFO1", "arg_values[%0d]: %0s", i, arg_values[i],
UVM_LOW));

end
endfunction

endclass

Fetching the command line processor
singleton class

Use the class methods

Get argument values

28 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

UVM Concepts Summary
• UVM Basics are proven and widely in use with all

simulators
• Provides both reuse and productivity
• UVM1.0 adds additional features to complement and

tune the existing capabilities
– UVM 1.1 includes bug fixes after initial users’ feedback

• If you have a new project, UVM is the way to go!

29 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Workshop Outline

10:00am – 10:05am Dennis Brophy Welcome

10:05am – 10:45am Sharon Rosenberg UVM Concepts and Architecture

10:45am – 11:25am Tom Fitzpatrick UVM Sequences and Phasing

11:25am – 11:40am Break

11:40am – 12:20pm Janick Bergeron UVM TLM2 and Register Package

12:20pm – 12:50pm Ambar Sarkar Putting Together UVM Testbenches

12:50pm – 1:00pm All Q & A

UVM Sequences & Phasing
Tom Fitzpatrick

Mentor Graphics

31 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Sequences
• Decouple stimulus specification

from structural hierarchy
– Simple test writer API

• Sequences define transaction
streams
– May start on any matching

sequencer
• Sequences can call children
• Built-in get_response() task
• Sequences & transactions

customizable via the factory
• Driver converts transaction

to pin wiggles

u1u1

u1

s5

s1

s4

s3
s2

s1

32 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Using Sequences And
Sequence Items
• A sequence is a UVM object – to start it:

– Construction using the factory:
• spi_tfer_seq spi_seq =

spi_tfr_seq::type_id::create(“spi_seq”);
– Configure - explicitly or via constrained randomization
– Start execution on the target sequencer:

• spi_seq.start(spi_sequencer);

• Within a sequence a sequence_item is:
– Constructed
– Scheduled on a sequencer with start_item()

• Blocking call that returns when the driver is ready
– Configured – explicitly or via constrained

randomization
– Consumed with finish_item()

33 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Sequence_Item Example
class spi_seq_item extends uvm_sequence_item;

// UVM Factory Registration Macro
`uvm_object_utils(spi_seq_item)

// Data Members (Outputs rand, inputs non-rand)
rand logic[127:0] spi_data;
rand bit[6:0] no_bits;
rand bit RX_NEG;

// Analysis members:
logic[127:0] mosi;
logic[7:0] cs;

// Methods
extern function new(string name = "spi_seq_item");
extern function void do_copy(uvm_object rhs);
extern function bit do_compare(uvm_object rhs, uvm_comparer comparer);
extern function string convert2string();
extern function void do_print(uvm_printer printer);
extern function void do_record(uvm_recorder recorder);

endclass:spi_seq_item

•Data fields:
•Request direction rand (stimulus generation)
•Response direction non-rand

•UVM Object Methods
•These methods get generated by the
automation macros
•Write them yourself to improve performance
if desired

34 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Basic Sequence-Driver API

class my_seq extends uvm_sequence #(my_req, my_rsp);
task body();

for(int unsigned i = 0; i < 20000; i++) begin
req = my_req::type_id::create(“req”);
start_item(req);
assert(req.randomize());
finish_item(req);
get_response(rsp);

end
endtask

endclass

class my_driver extends uvm_driver;
task run_phase(uvm_phase phase);

… begin
seq_item_port.get_next_item(req);
drive_transfer(req);
rsp.set_id_info(rsp);
seq_item_port.item_done();
seq_item_port.put_response(rsp);
end

endtask
endclass

Sequence parameterized
by request/response types

body() method
defines

what happens

35 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Sequence API Options

• Macros allow constraints to be passed in
• Macros require pre-defined callbacks to modify

behavior
• Multiple macro variations
• Explicit API provides greater control and easier

debug

Using Macros
req = my_req::type_id::create(“req”);
start_item(req);
assert(req.randomize());
finish_item(req);
get_response(rsp);

`uvm_do(req)
get_response(rsp);

Explicit

36 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Sequencer and Driver
typedef uvm_sequencer#(my_req,my_rsp) my_sequencer;
class my_master_agent extends uvm_agent;
function void build_phase(uvm_phase phase);

void’(uvm_config_db#(bitstream_t)::get(this,“”, “is_active”, is_a);
if(is_a) begin

seqr = my_sequencer::type_id::create(“seqr”, this);
driver = my_driver::type_id::create(“driver”, this);

end
endfunction
function void connect_phase(uvm_phase phase);

if(is_a)
driver.seq_item_port.connect(seqr.seq_item_export);

endfunction
endclass

my_sequencer

uvm_sequencer#(my_req,my_rsp)

agent

driverseqr
By default, you don’t need
to extend uvm_sequencer

37 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Starting a Sequence
• Explicit

• Implicit (Default Sequence)
– Using wrapper

– Using instance

task xxx_phase(uvm_phase phase);
my_seq.start(seqr);

uvm_config_db#(uvm_object_wrapper)::set(this,“agent.sqr.xxx_phase",
"default_sequence", my_seq::type_id::get());

myseq = my_seq::type_id::create(“myseq”);
uvm_config_db#(uvm_sequence_base)::set(this,“agent.sqr.xxx_phase",

"default_sequence", myseq);
my_seq.set_priority(200);

“xxx_phase” can be
any run-time phase

Wrapper

Sequence

Sequencer

Phase

38 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Calling start()

my_seq.pre_start()
my_seq.pre_body();
parent.pre_do(0);
parent.mid_do(this);

my_seq.body();
parent.post_do(this);

my_seq.post_body();
my_seq.post_start();

my_seq.start(uvm_sequencer_base seqr,
uvm_sequencer_base parent = null,
integer priority = 100,
bit call_pre_post = 1);

task xxx_phase(uvm_phase phase);
my_seq.start(seqr);

on sequencer

If parent!=null

If call_pre_post ==1
Stimulus

code

39 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Sequence Library (Beta)

class my_seq_lib extends uvm_sequence_library #(my_item);
`uvm_object_utils(my_seq_lib)
`uvm_sequence_library_utils(my_seq_lib)
function new(string name="");

super.new(name);
init_sequence_library();

endfunction
...

endclass

class uvm_sequence_library #(type REQ=int,RSP=REQ)
extends uvm_sequence #(REQ,RSP);

class my_seq1 extends my_seq;
`uvm_object_utils(my_seq1)
`uvm_add_to_seq_lib(my_seq1,my_seq_lib)
…

endclass

my_seq_lib

my_seq1

my_seq2

Sequence Library
IS-A Sequence

class my_seq2 extends my_seq;
`uvm_object_utils(my_seq2)
`uvm_add_to_seq_lib(my_seq2,my_seq_lib)
…

endclass

`uvm_sequence_utils
`uvm_sequencer_utils

et. al. deprecated

40 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Sequence Library

typedef enum
{ UVM_SEQ_LIB_RAND,
UVM_SEQ_LIB_RANDC,
UVM_SEQ_LIB_ITEM,
UVM_SEQ_LIB_USER

} uvm_sequence_lib_mode;

uvm_config_db #(uvm_sequence_lib_mode)::set(this,
"sequencer.xxx_phase“, “default_sequence.selection_mode”, MODE);

•Random sequence selection

•Random cyclic selection

•Emit only items,no sequence execution

•User-defined random selection

function int unsigned select_sequence(int unsigned max);
// pick from 0 <= select_sequence < max;

endfunction

41 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

UVM Phasing

uvm

•shutdown

post_shutdown

main

pre_main

•post_configure

•configure

pre_configure

•post_reset

•reset

pre_reset

pre_shutdown

•post_main

common

build

end_of_elaboration

connect

start_of_simulation

run

extract

check

report

final

Several new runtime phases
in parallel with run_phase()

To simplify examples, these
slides will show a reduced set
of phases

new vip

Legacy
OVM VIP

time

reset configure main shutdown

42 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Phase Synchronization
• By default, all components must allow all

other components to complete a phase
before all components move to next phase

time

reset configure main shutdown

reset configure main shutdown

reset configure main shutdownVIP 1:

VIP 2:

VIP 3:

43 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Phase Semantics
• In UVM Reference Guide, the semantics

for each phase are defined, e.g.
reset

Upon Entry
•Indicates that the hardware reset signal is ready to be asserted.

Typical Uses
•Assert reset signals.
•Components connected to virtual interfaces should drive their output to their
specified reset or idle value.
•Components and environments should initialize their state variables.
•Clock generators start generating active edges.
•De-assert the reset signal(s) just before exit.
•Wait for the reset signal(s) to be de-asserted.

Exit Criteria
•Reset signal has just been de-asserted.
•Main or base clock is working and stable.
•At least one active clock edge has occurred.
•Output signals and state variables have been initialized.

44 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

uvm_component Basic API

task/function <name>_phase(uvm_phase phase)
phase.raise_objection(this);
phase.drop_objection(this);

function void phase_started(uvm_phase phase)
function void phase_ended(uvm_phase phase)

Call these to prevent and re-allow
the current phase ending

Implement these to specify
behavior for the start/end of
each phase; threads started

here are not auto-killed

Implement these to specify behavior
for a specific phase; threads started

here are auto-killed

45 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

uvm_component Example

task main_phase(uvm_phase phase);
phase.raise_objection(this);
… main test behavior, e.g. send 100 items…
phase.drop_objection(this);

endtask

function void phase_started(uvm_phase phase);
if (phase.get_name()==“post_reset”)

fork background_thread(); join_none
endfunction

Called automatically
when main phase

starts (after all
phase_started() calls)

Called automatically
when phase first starts.

Thread forks when
phase is post_reset.

46 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

User-defined Phases
• Integrator can create one or more phases
• Integrator can create schedules with any

mix of standard and user-defined phases
then assign components to use one of
those schedules

configure post_configure
New

sched: cfg2

“want new phase
named cfg2 after

configure and before
post_configure”

uvm_domain common =
uvm_domain::get_common_domain();

common.add(cfg2_phase::get(),
.after_phase(configure_phase::get(),
.before_phase(post_configure_phase.get())

);

47 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Separate Domains
• Sometimes it is OK for a part of the

design/environment to do behavior that is
out of alignment with the remainder
– e.g. mid-sim reset of a portion of the chip
– e.g. one side starts main functionality while

other side is finishing configuration

48 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Domain B

Domain A

Domains

• Domains are collections of components
that must advance phases in unison
– By default, no inter-domain synchronization

time

reset configure main shutdown

reset configure main shutdown

reset configure main shutdownVIP 1:

VIP 2:

VIP 3:

49 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Domain Synchronization
• Domains can be synchronized at one,

many, or all phase transitions.

Domain B

Domain A

time

reset configure main shutdown

reset configure main shutdownVIP 1:

VIP 2:

Two domains sync’d at main

domainA.sync(.target(domainB),.phase(uvm_main_phase::get()));

50 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Fully Synchronized Domains
• If two domains are fully synchronized and

one domain jumps back, the second
domain will continue in its current phase
and wait for the first to catch up

Domain B

Domain A

time

reset configure main shutdown

reset configure main shutdownVIP 1:

VIP 2:

reset config main

phase.jump(uvm_reset_phase::get())

51 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Sequences and Phases

class my_seq extends uvm_sequence#(my_req,my_rsp);
virtual task body();

if (starting_phase != null)
starting_phase.raise_objection(this,

“Starting my_seq”);
…//body of sequence
if (starting_phase != null)

starting_phase.drop_objection(this,
“Ending my_seq”);

endtask
endclass

Raise objection first

Drop objection last

Phase won’t end until my_seq completes

Unless you do a jump()

52 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Ending Phases

VIP:

task run_phase(uvm_phase phase);
phase.raise_objection();
seq.start();
phase.drop_objection();

endtask

my_seq
run extract check report

Must raise_objection()
before first NBA Phase ends when all

objections are dropped

53 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Ending Phases

VIP:

task main_phase(uvm_phase phase);
phase.raise_objection();
seq.start();
phase.drop_objection();

endtask

main_seq
main

Must raise_objection()
before first NBA Phase ends when all

objections are dropped

post_main

54 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

task main_phase(uvm_phase phase);
while(!ending) begin
…

if(ending)
phase.drop_objection();

…
endtask

virtual function void
phase_ready_to_end(uvm_phase phase);
if(phase.get_name==“main”) begin

ending = 1;
if(busy)

phase.raise_objection();
end

endfunction

Delaying Phase End

VIP:

task main_phase(uvm_phase phase);
phase.raise_objection();
seq.start();
phase.drop_objection();

endtask

main_seq
main

Drop when
really done

all_dropped resets
phase objection

post_main

calls
phase_ready_to_end()

last chance to raise
an objection

55 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Ending Phases
• Phase objection must be raised before first

NBA
• Phase forks off processes

– wait for phase.all_dropped
– call phase_ready_to_end()

• component can raise objection
– Check objection count
– call phase_ended()
– kill_processes
– execute successors

56 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Test Phase Example
task reset_phase (uvm_phase phase);

reset_seq rst = reset_seq::type_id::create(“rst”);
phase.raise_objection(this, “resetting”);

rst.start(protocol_sqr);
phase.drop_objection(this, “ending reset”);

endtask: reset_phase

task configure_phase (uvm_phase phase);
configure_seq cfg = configure_seq::type_id::create(“cfg”);
phase.raise_objection(this, “configuring dut”);
cfg.start(protocol_sqr);
phase.drop_objection(this, “dut configured”);

endtask: configure_phase

task main_phase (uvm_phase phase);
test_function1_seq tst = test_function1_seq ::type_id::create(“tst”);
phase.raise_objection(this, “functionality test”);
tst.start(protocol_sqr);
phase.drop_objection(this, “functionality tested”);

endtask: main_phase

(Test) Component runs different
sequences in each phase.

Phase level sequences may run
on different sequences in

parallel

57 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Workshop Outline

10:00am – 10:05am Dennis Brophy Welcome

10:05am – 10:45am Sharon Rosenberg UVM Concepts and Architecture

10:45am – 11:25am Tom Fitzpatrick UVM Sequences and Phasing

11:25am – 11:40am Break

11:40am – 12:20pm Janick Bergeron UVM TLM2 and Register Package

12:20pm – 12:50pm Ambar Sarkar Putting Together UVM Testbenches

12:50pm – 1:00pm All Q & A

58 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Accellera at DAC
• Accellera Breakfast at DAC: UVM User Experiences

– An Accellera event sponsored by Cadence, Mentor, and Synopsys
– Tuesday, June 7th, 7:00am-8:30am, Room 25AB

• Accellera IP-XACT Seminar
– An introduction to IP-XACT, IEEE 1685, Ecosystem and Examples
– Tuesday, June 7th, 2:00pm-4:00pm, Room 26AB

• Birds-Of-A-Feather Meeting
– Soft IP Tagging Standardization Kickoff
– Tuesday, June 7, 7:00 PM-8:30 PM, Room 31AB

59 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Workshop Outline

10:00am – 10:05am Dennis Brophy Welcome

10:05am – 10:45am Sharon Rosenberg UVM Concepts and Architecture

10:45am – 11:25am Tom Fitzpatrick UVM Sequences and Phasing

11:25am – 11:40am Break

11:40am – 12:20pm Janick Bergeron UVM TLM2 and Register Package

12:20pm – 12:50pm Ambar Sarkar Putting Together UVM Testbenches

12:50pm – 1:00pm All Q & A

UVM Transaction Level Modeling (TLM2)

Janick Bergeron
Synopsys

61 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

TLM-1.0
• Unidirectional put/get interfaces

• Simple message-passing semantics
• No response model

– E.g. What did I read back??
• Never really caught on in SystemC

•Initiator •Target

•put

•Initiator •Target

•get

62 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Why TLM-2.0?
• Better interoperability over TLM-1.0

– Semantics
– Pre-defined transaction for buses

• Performance
– Pass by reference (in SystemC)
– Temporal decoupling

63 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

TLM-2.0 in SV vs SC
• Blocking transport interface
• Nonblocking transport interfaces
• Direct memory interface
• Debug transport interface
• Initiator sockets
• Target sockets
• Generic payload
• Phases
• Convenience sockets
• Payload event queue
• Quantum keeper
• Instance-specific extensions
• Non-ignorable and mandatory extensions
• Temporal decoupling

64 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

TLM-2.0 Semantics
• Blocking

– When the call returns,
the transaction is done

– Response is annotated
• Nonblocking

– Call back and forth
• Protocol state changes
• Transaction is updated

– Until one says “done”

•Initiator •Target

•Initiator •Target

65 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Generic Payload Attributes

Attribute Type Modifiable?
Command uvm_tlm_command_e No
Address bit [63:0] Interconnect only
Data byte unsigned [] Yes (read command)
Data length int unsigned No
Byte enable pointer byte unsigned [] No
Byte enable length int unsigned No
Streaming width int unsigned No
Response status uvm_tlm_response_status_e Target only
Extensions uvm_tlm_extension_base [] Yes

• Pre-defined bus transaction

66 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Connecting to SystemC
• Tool-specific mechanism

– Not part of UVM

•SystemVerilog •SystemC

•Copy across
at method call

and return

67 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

TLM-2.0 Bridge Between SV & SC

• Proxy sockets terminate the TLM2
connections in each language
– Create SV/SC bridge

•Initiator •Target

•Pack/unpack

•Proxy Trgt •Proxy Init

•TLM2 Bridge
•Predefined
for GP in VCS

•User-defined for
GP extensions

or non-GP

•Unaware of
language
crossing

•Unaware of
language
crossing

UVM Register Model
Janick Bergeron

Synopsys

69 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Overall Architecture

AdapterGeneric
physical r/w

Backdoor

Any bus
agent

Register Model

Pre-Defined
SequencesPre-Defined

SequencesUser-Defined
Sequences

Pre-Defined
SequencesPre-Defined

SequencesPre-Defined
Sequences

DUT

Spec

Generator

Abstract
read/write

Bus-specific
r/w item

70 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Specification & Generation

Register Model

IP-XACT

Generator

System
RDL SQL CSV MS-

Word
...

UVM

UVMX EDA
VendorsGeneratorGeneratorGenerator

71 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Physical Interfaces
• Register model abstracts

– Physical interfaces
– Addresses
– Endianness

Register
Model

User
perspective

R1.read(...);
...
R2.write(...);
...
R3.read(...);

R1

R2

R3

DUT may
change

Perspective
stays the same

72 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Mirror
• Register model mirrors content of registers

in DUT
– “Scoreboard” for registers
– Updated on read and write()
– Optionally checked on read()

Register
Model R1

R2

R3

R1

R3

R2

API

73 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Back-door Access
• Must define HDL path to register in DUT

– Generator-specific
• Access RTL directly in zero-time via VPI

– May affect simulator performance

R1

R2

R3

R1

R3

R2

API

Mirror is
implicitly
updated

74 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Programmer’s View

F1 F2 F3

R0

F4...

...F4

R1

R0

R2

F5 F6

F5 F6

F5 F6

A[0]

A[1]

A[255]

F7 F8

F9 F10

RF0[0]

RF1[0]

F7 F8

F9 F10

RF0[0]

RF1[0]

F7 F8

F9 F10

RF0[7]

RF1[7]

M0 M0[0..65535]

Array of Registers

Array of Register Files

Memory

Multi-address Register

75 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

F1

Class View
• One class per field
• One class per register

– Name
– Address
– Contained fields
– Read/Write methods

F3

F4...

F2

R0

...F4

R1

R0

R2

F5 F6

F5 F6

F5 F6

A[0]

A[1]

A[255]

F7 F8

F9 F10

RF0[0]

RF1[0]

F7

F9 F10

RF0[0]

RF1[0]

F7 F8

F9 F10

RF0[7]

RF1[7]

M0 M0[0..65535]

F8

class R1_reg extends uvm_reg;
uvm_reg_field F1;
uvm_reg_field F2;
uvm_reg_field F3;

endclass
Generated

Make sure names
are different from

base class methods

76 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

F1

Class View
• One class per block

– Name, Base address
– Contained registers,

register files, memories
• May be arrays
• Optional: contained fields

F3

F4...

F2

R0

...F4

R1

R0

R2

F5 F6

F5 F6

F5 F6

A[0]

A[1]

A[255]

F7 F8

F9 F10

RF0[0]

RF1[0]

F7

F9 F10

RF0[0]

RF1[0]

F7 F8

F9 F10

RF0[7]

RF1[7]

M0 M0[0..65535]

F8

class B_blk extends uvm_reg_block;
R0_reg R0;
R1_reg R1;
R2_reg R2;
A_reg A[256];
RF_rfile RF[8];
ovm_ral_mem M0;

endclass
Generated

Make sure names
are different from

base class methods

77 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

API View
• Methods in relevant

class instance
F1 F2 F3

R0

F4...

...F4

R1

R0

R2

F5 F6

F5 F6

F5 F6

A[0]

A[1]

A[255]

F7 F8

F9 F10

RF0[0]

RF1[0]

F7 F8

F9 F10

RF0[0]

RF1[0]

F7 F8

F9 F10

RF0[7]

RF1[7]

M0 M0[0..65535]

blk.R0.get_full_name()

blk.F4.read(...)

blk.A[1].write(...)

blk.A[255].F5.write(...)

foreach (blk.RF[i]) begin
blk.RF[i].R0.F7.read(..._);

end

blk.M0.read(...)

78 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Reading and Writing
• Specify target register by hierarchical

reference in register model
– Compile-time checking

• Use read() and write() method on
– Register
– Field
– Memory

blk.blk[2].regfile[4].reg.fld

blk.blk[2].regfile[4].reg.fld.read(...);
blk.mem.write(...);

By-name API
also available

79 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Register Sequences
• Sequences accessing registers should be

virtual sequences
– Not associated with a particular sequencer

type
• Contain a reference

to register model
• Access registers in

body() task

class my_test_seq
extends uvm_sequence;

my_dut_model regmodel;

virtual task body();
regmodel.R1.write(...);
regmodel.R2.read(...);
...

endtask
endclass

80 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Register Sequences
• Includes pre-defined sequences

– Check reset values
– Toggle & check every bit
– Front-door/back-door accesses
– Memory walking

81 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Introspection
• Rich introspection API

Block

Register

Field

Register File Map

get_regfile()

get_maps()
is_in_map()
get_offset()

get_fields()

get_block()

get_blocks()

get_parent()

get_parent()

get_maps()

get_registers()

get_access()
get_reset()
get_n_bits()
get_lsp_pos()
is_volatile()

82 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Coverage Models
• Register models may contain coverage

models
– Up to the generator

• Not instantiated by default
– Can be large. Instantiate only when needed.
– To enable:

• Not collected by default
– To recursively enable

uvm_reg::include_coverage(“*”, UVM_CVR_ALL);

All coverage
models

In all blocks
and registers

blk.set_coverage(UVM_CVR_ALL);

All coverage
models in block

83 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Customization Opportunities

Register Model

Spec

Generator Pre-Build

Post-Build

Best

Options,
value-add

DON’T!
Factory

Callbacks

84 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

There’s a LOT more!
• DUT integration
• Multiple interfaces
• Randomization
• Vertical Reuse
• “Offline” access
• User-defined front-door accesses
• Access serialization
• Pipelined accesses

85 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Workshop Outline

10:00am – 10:05am Dennis Brophy Welcome

10:05am – 10:45am Sharon Rosenberg UVM Concepts and Architecture

10:45am – 11:25am Tom Fitzpatrick UVM Sequences and Phasing

11:25am – 11:40am Break

11:40am – 12:20pm Janick Bergeron UVM TLM2 and Register Package

12:20pm – 12:50pm Ambar Sarkar Putting Together UVM Testbenches

12:50pm – 1:00pm All Q & A

Putting Together UVM Testbenches
Ambar Sarkar

Paradigm Works, Inc.

87 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Agenda
• Case studies

– Several UVM1.0 environments deployed
– Currently in production
– Novice to sophisticated teams

• Getting started with UVM is relatively easy
– Basic tasks remain simple
– Were able to use a “prescriptive” approach
– Iteratively developed and scales to any complexity

• Advanced uses
– Unit to system-level
– VIP Stacking/Layering

88 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Implementing Basic Steps

Connect DUT to testbench

Send clocks and resets

Initialize the DUT

Send traffic

Add checking

Write tests

Once plumbing in
place, a simple

prescriptive approach
works

Increasing
sophistication,
but scalable

89 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Example

Channel Engine

Host Interface
Read/Write

Packet Input

Packet Output 1

Packet Output 3

Packet Output 2

90 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Example Environment in UVM

DUT

unit_tb

test cases ...

interrupt
scoreboard

packet
scoreboard

host agent

Config:
active

Config:
active

pi agent

clk_rst agent

Config
:active

clk_rst agent

Config
:active

po agent

active
Config:

po agent

active
Config:

po agent

active
Config:

[x3]

91 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Connect DUT to Testbench
Always use SystemVerilog interface

Use clocking blocks for testbench per
interface
Use modports for DUT

Pass interface to the environment
Use uvm_config_dbChannel Engine

Host Interface
Read/Write

Packet Input

Packet Output 1

Packet Output 3

Packet Output 2

Set (Top level initial block)
uvm_config_db#(virtual host_if)::set(

null, “my_tb.*”,“vif”, vif);

Get (In build phase of the agent)
if(!uvm_config_db#(virtual host_if)::get(

this,,"vif",vif))
`uvm_fatal(“NOVIF”, . . .);

92 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Connect Clock and Resets
Combine clock and reset as agents in one env

Define reset as sequences

class clk_rst_env extends uvm_env;
clk_rst_cfg cfg; //! VIP configuration object
//! bring ports out for convenience
uvm_analysis_port #(uvm_transaction) rst_mon_ap_out;

//! Agents in env
clk_agent clk_agt;
rst_agent rst_agt;

. . .

task clk_rst_reset_pulse_sequence::body();

`uvm_do_with(change_sequence, { level == 0;
hold_cycles == init_cycles;

`uvm_do_with(change_sequence, { level == 1;
hold_cycles == assert_cycles;

`uvm_do_with(change_sequence, { level == 0;
hold_cycles == negate_cycles;

93 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Initializing the DUT
Add transaction definitions for configuration interface (host)
Add driver code for host
Setup host initialization seq
class host_transaction extends uvm_sequence_item;

...
rand bit[31:0] hi_addr;
rand bit[7:0] hi_wr_data;
. . .

task pwr_hi_master_driver::drive_transaction(host_transaction trans);
if (trans.trans_kind == PWR_HI_WR) begin

intf.hif_address = trans.hi_addr;
intf.hif_data = trans.hi_wr_data;

. . .

task my_env_init_sequence::body();
regmodel.R1.write(...);
regmodel.R2.read(...);

. . .

94 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Sending traffic
Similar to initialization
Sequences differ
//! sequence body.
task pi_sequence::body();

pi_transaction#(. . .) req_xn;
cfg_inst = p_sequencer.cfg;
forever begin

p_sequencer.peek_port.peek(req_xn);
if (!this.randomize()) begin

`uvm_fatal({get_name(), "RNDFLT"}, "Can't randomize");
end
`uvm_do_with(this_transaction,

{ trans_kind == req_xn.trans_kind;
read_vld_delay inside { [0:15] };
. . .

});
. . .

95 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Checking and Writing Tests
Add checking in the environment

Add monitor code for all components
Connect the scoreboards

Add test-specific checking in the test as needed

class my_env extends uvm_env;
unit_scoreboard#(uvm_transaction, uvm_transaction) sb;

function void my_env::build_phase(uvm_phase phase);
...
sb = unit_scoreboard#(uvm_transaction, uvm_transaction)

::type_id::create({get_name(), "_sb"}, this);

function void pwc_env::connect_phase(uvm_phase phase);
. . .
pi_mon.mon_ap_out.connect(sb.post_export);
po_mon.mon_ap_out.connect(sb.check_export);

96 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Connecting Unit to System Level

97 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

• Scoreboarding
• Reuse SB encapsulated within sub-envs
• Chain the scoreboards

• Functional Coverage
• Needed to filter coverage points

• Reuse monitors
• Avoid duplicated instances

• Gate Simulations
• Disable monitors
• Disable internal scoreboards

• Registers
• Register abstraction reused, but different interfaces used

• Configurations
• Defined separate system configuration
• Top level instantiated sub-env configurations

• Sequences
• Virtual sequencer only at the system level
• Initialization sequences reused from unit-level
• Traffic sequences created from scratch at the system level

Connecting Unit to System Level:
Reuse

98 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Connecting Unit to System Level:
Prescription
For each sub-env class

Extend sub-env base class
Make all internal components passive
Added sub-env config object to your system config

Turn off virtual sequencer at the unit level

Declare at system-level:
unit_env_cfg unit_env_cfg_inst;
`uvm_field_object(unit_env_cfg_inst, UVM_REFERENCE)

99 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

VIP Stacking/Layering

VIP Agent Bottom

Monitor Driver

Config
is_active=1
has_interface=1

Sequencer

vi vi

Analysis

VIP Agent Top

Monitor

Design Under Test

Analysis

Config
is_active=1
has_interface=0

Convert Monitor

Convert Sequencer

Sequencer

Converts
upwards

Converts
Downwards

100 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Summary
• Getting started with UVM was relatively easy

Once initial plumbing in place
Basic tasks remain simple
Were able to use a “prescriptive” approach

• Able to iteratively develop testbench
Scales to any complexity
Unit to system
Stacking of VIPs

• Deployed across projects and simulation vendors
Worked with minor gotchas

No UVM issues found
Some SystemVerilog support issues among vendors

e.g. Inout ports and modports and clocking blocks

101 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Workshop Outline

10:00am – 10:05am Dennis Brophy Welcome

10:05am – 10:45am Sharon Rosenberg UVM Concepts and Architecture

10:45am – 11:25am Tom Fitzpatrick UVM Sequences and Phasing

11:25am – 11:40am Break

11:40am – 12:20pm Janick Bergeron UVM TLM2 and Register Package

12:20pm – 12:50pm Ambar Sarkar Putting Together UVM Testbenches

12:50pm – 1:00pm All Q & A

102 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Questions?

• Download UVM from www.accellera.org
– Reference Guide
– User Guide
– Reference Implementation
– Discussion Forum

http://www.accellera.org/�

103 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Accellera at DAC

• Accellera Breakfast at DAC: UVM User Experiences
– An Accellera event sponsored by Cadence, Mentor, and Synopsys
– Tuesday, June 7th, 7:00am-8:30am, Room 25AB

• Accellera IP-XACT Seminar
– An introduction to IP-XACT, IEEE 1685, Ecosystem and Examples
– Tuesday, June 7th, 2:00pm-4:00pm, Room 26AB

• Birds-Of-A-Feather Meeting
– Soft IP Tagging Standardization Kickoff
– Tuesday, June 7, 7:00 PM-8:30 PM, Room 31AB

104 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Lunch in Room 20D

Show your Workshop Badge

for entry

105 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Thank You

	Universal Verification Methodology (UVM)
	Workshop Outline
	Workshop Outline
	UVM Concepts and Architecture
	UVM Core Capabilities
	The Goal: Automation
	UVM Architecture: �Interface Level Encapsulation
	Agent Standard Configuration
	uvm: Configurable Bus Environment
	UVM Configuration Mechanism
	UVM1.0 Configuration Enhancements (Cont’)
	Virtual Interface Configuration Example
	Where SV Language Stops and UVM Begins�Example: Data Items
	Enabling Data Item Automation
	Data Type Automation
	UVM Messaging Facility
	UVM Sequences
	UVM Tests and Testbenches
	UVM Simulation Phases
	UVM Simulation Phases
	UVM Testbench Example
	Overriding SV Components and Data Objects
	The Test Launching Mechanism
	 Extensions Using Callbacks
	UVM Report Catcher Callback�Goal: Message Manipulation
	Command-line Processor Class
	Command-line Processor Example
	UVM Concepts Summary
	Workshop Outline
	UVM Sequences & Phasing
	Sequences
	Using Sequences And Sequence Items
	Sequence_Item Example
	Basic Sequence-Driver API
	Sequence API Options
	Sequencer and Driver
	Starting a Sequence
	Calling start()
	Sequence Library (Beta)
	Sequence Library
	UVM Phasing
	Phase Synchronization
	Phase Semantics
	uvm_component Basic API
	uvm_component Example
	User-defined Phases
	Separate Domains
	Domains
	Domain Synchronization
	Fully Synchronized Domains
	Sequences and Phases
	Ending Phases
	Ending Phases
	Delaying Phase End
	Ending Phases
	Test Phase Example
	Workshop Outline
	Accellera at DAC
	Workshop Outline
	UVM Transaction Level Modeling (TLM2)
	TLM-1.0
	Why TLM-2.0?
	TLM-2.0 in SV vs SC
	TLM-2.0 Semantics
	Generic Payload Attributes
	Connecting to SystemC
	TLM-2.0 Bridge Between SV & SC
	UVM Register Model
	Overall Architecture
	Specification & Generation
	Physical Interfaces
	Mirror
	Back-door Access
	Programmer’s View
	Class View
	Class View
	API View
	Reading and Writing
	Register Sequences
	Register Sequences
	Introspection
	Coverage Models
	Customization Opportunities
	There’s a LOT more!
	Workshop Outline
	Putting Together UVM Testbenches
	Agenda
	Implementing Basic Steps
	Example
	Example Environment in UVM
	Connect DUT to Testbench
	Connect Clock and Resets
	Initializing the DUT
	Sending traffic
	Checking and Writing Tests
	Connecting Unit to System Level
	Connecting Unit to System Level: Reuse
	Connecting Unit to System Level: Prescription
	VIP Stacking/Layering
	Summary
	Workshop Outline
	Questions?
	Accellera at DAC
	Slide Number 104
	Slide Number 105

